国产强伦姧在线观看无码,中文字幕99久久亚洲精品,国产精品乱码在线观看,色桃花亚洲天堂视频久久,日韩精品无码观看视频免费

      您現(xiàn)在的位置:智能制造網(wǎng)>技術(shù)中心>幾種方法實現(xiàn)液壓泵信息融合故障診斷

      直播推薦

      更多>

      企業(yè)動態(tài)

      更多>

      推薦展會

      更多>

      幾種方法實現(xiàn)液壓泵信息融合故障診斷

      2009年07月17日 16:22:14人氣:1686來源:上海超眾液壓氣動成套設(shè)備有限公司

      幾種方法實現(xiàn)液壓泵信息融合故障診斷
          液壓泵是液壓系統(tǒng)的心臟,其故障診斷是液壓系統(tǒng)故障診斷的重要部分。由于流體的壓縮性、泵源與伺服系統(tǒng)的流固耦合作用及液壓泵本身具有大幅度的固有機械振動,使得液壓泵的故障機理復雜,故障特征提取困難,故障診斷的模糊性強。大量的液壓泵故障診斷數(shù)據(jù)表明,通過泵源出口檢測到的故障信號常被干擾信號淹沒,單一故障檢測信號常呈現(xiàn)出強的模糊性,采用常規(guī)的信號處理方法難以提升有效的故障特征。
       
          從故障診斷學的角度來看,任何一種診斷信息都是模糊的、不的,對任何一種診斷對象,用單一信息來反映其狀態(tài)行為都是不完整的,如果從多方面獲取同一對象的多維故障冗余信息加以綜合利用,就能對系統(tǒng)進行更可靠更的監(jiān)測和診斷。本文針對柱塞泵球頭松動故障模式,通過在液壓泵出口配置振動傳感器和壓力傳感器進行故障檢測,通過小波分析進行信號消噪處理,利用主成分分析提取有效融合信息,采用改進算法的BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)液壓泵微弱信號或多故障的有效診斷。 

          1、液壓泵球頭松動故障機理分析 

          由于制造誤差或液壓泵在工作過程中的壓力沖擊,常常使柱塞球頭與球窩沉凹變形使球頭與球窩間隙增大,從而產(chǎn)生柱塞球頭松動的故障。
       
          1.1基于振動信號的故障機理分析 

          液壓泵缸體在轉(zhuǎn)動過程中,柱塞在油缸中往復運動。當缸體轉(zhuǎn)過一定角度時,經(jīng)過上死點柱塞進人吸油區(qū),球頭與柱塞發(fā)生一次碰撞;當缸體轉(zhuǎn)動經(jīng)過上死點后,球頭開始向柱塞方向運動,球頭與柱塞發(fā)生相對運動;當轉(zhuǎn)過排油區(qū)時,高壓油作用在柱塞上,使柱塞迅速向球頭方向運動,從而又一次產(chǎn)生沖擊。缸體轉(zhuǎn)動一周,球頭與柱塞發(fā)生兩次碰撞,經(jīng)過傳動軸和軸承將能量傳遞到殼體上,故球頭松動故障的振動頻率為軸頻率的2倍。

          1.2基于壓力信號的故障機理分析 

          球頭松動對液壓泵出口的壓力脈動也有影響。當缸體轉(zhuǎn)過上死點時,球頭向柱塞方向運動,當油缸的排油進入卸荷區(qū)時,球頭與柱塞還未發(fā)生碰撞,這時在高壓油的作用下,柱塞又向球頭方向運動,球頭與球窩發(fā)生碰撞,產(chǎn)生振動沖擊的同時,碰撞通過柱塞作用在高壓油上從而產(chǎn)生一個壓力脈動,所以球頭松動引起泵出口的壓力脈動頻率與泵的軸頻率相同,由上述分析可知,如果球頭與球窩的間隙很小時,球頭與柱塞的相對速度不大,產(chǎn)生的碰撞能量很小。當間隙增大時,產(chǎn)生的振動能量就會增大,且具有周期變化的時變特性,殼體檢測的振動能量通常分布于2倍軸頻率處;對于壓力脈動信號,能量主要分布在軸頻率處。 

          1.3球頭松動故障診斷系統(tǒng) 

          針對球頭松動故障,在液壓泵出口垂直方向安裝了2個加速度傳感器ax、a。檢測振動,1個壓力傳感器P檢測泵的壓力脈動。由于液壓泵出口檢測到的振動信號和壓力信號常被干擾信號淹沒,為了提取故障特征,對上述傳感器的檢測信號進行小波消噪處理。 
          2、小波信號消噪處理 

          液壓泵的工作環(huán)境一般比較惡劣,其工況受環(huán)境的影響較大,通常在泵出口檢測到的信號含有很大的噪聲。試驗表明,液壓泵出口檢測到的壓力信號和振動信號體現(xiàn)出以下特點:①信號的頻譜分布很寬、波形雜亂,規(guī)律性差;②時變與非平穩(wěn)性表現(xiàn)明顯。 
          因此,基于這兩種信號的故障特征提取非常困難,有必要對檢測的信號進行消噪處理。 

          小波分析是目前較有效的信號處理方法,它可以同時在時域和頻域中對信號進行分析,能有效地區(qū)分信號中的突變部分和噪聲,實現(xiàn)信號的消噪。
       
          泵出口振動信號及其小波消噪后的信號,選取小波消噪的全局閾值為1.049。很明顯,檢測信號中包含了許多干擾信號,很難簡單地利用檢測到的振動信號進行有效的故障診斷。為了消除干擾影響,經(jīng)過小波處理,可以有效地消除泵出口振動信號中所包含的噪聲,有利于故障特征的提取。

          3、信息融合故障診斷方法 

          信息融合是將多源信息加以智能合成,產(chǎn)生比單一信息源更、容錯性和魯棒性更強的估計和判斷‘2’。由于液壓泵出口檢測到的信息微弱,易于被干擾所淹沒,很難利用單個傳感器的檢測信號進行微弱故障特征的有效診斷。采用的信息融合故障診斷過程,即將振動信號和壓力信號進行小波消噪處理,利用統(tǒng)計分析提取有效特征信息,采用主成分分析(PrinciP81componentanalysis,PCA)有效解耦各故障特征間的相關(guān)性,減少故障特征的維數(shù),采用改進算法的BP神經(jīng)網(wǎng)絡(luò)實現(xiàn)液壓泵球頭松動故障診斷。 
          3.1特征層信息融合
       
          特征層狀態(tài)屬性融合就是將對多種類型傳感器數(shù)據(jù)進行預處理以完成特征提取及數(shù)據(jù)配準,即通過傳感器信息轉(zhuǎn)換,把各傳感器輸人數(shù)據(jù)變換成統(tǒng)一的數(shù)據(jù)表達形式。
       
          通過特征向量歸一化處理可以實現(xiàn)信息融合數(shù)據(jù)配準。本文提取振動信號和壓力信號的均值、峰值因子、特征頻率的能量值和功率譜幅值、四次矩等作為球頭松動故障的特征向量。 

          3.2選取主成分
       
          在新樣本空間上,逐次計算傳感器信息的綜合指數(shù)為主成分上的貢獻。令主成分貢獻綜合指數(shù)閾值為85%,根據(jù)貢獻綜合指數(shù)選取前幾個主成分,作為下一步信息融合的信息。 

          針對液壓泵正常和4種球頭松動故障,各選取100個樣本,由于高度顯著,說明這4組特征向量有十分明顯的差異,故此類故障的不同故障程度是可以診斷的。 

          選擇BP神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu),對液壓泵正常和設(shè)置的4種球頭松動故障在訓練誤差精度要求下對網(wǎng)絡(luò)進行訓練,通過改進算法的學習和訓練得到BP網(wǎng)絡(luò)的優(yōu)化權(quán)值矩陣。在實際使用時,利用BP神經(jīng)網(wǎng)絡(luò)的權(quán)值矩陣及其改進算法實現(xiàn)多故障的有效診斷。其中輸出節(jié)點1表示液壓泵正常時神經(jīng)網(wǎng)絡(luò)的輸出值,節(jié)點2表示間隙為6μm時神經(jīng)網(wǎng)絡(luò)的輸出值,節(jié)點3表示間隙為9μm神經(jīng)網(wǎng)絡(luò)的輸出值,節(jié)點4表示間隙為12μm時神經(jīng)網(wǎng)絡(luò)的輸出值,節(jié)點5表示15μm時神經(jīng)網(wǎng)絡(luò)的輸出值。 

          利用BP神經(jīng)網(wǎng)絡(luò)及其改進算法可以有效診斷不同間隙大小的球頭松動故障。
       
          4、結(jié)論 

          本文通過液壓泵出口的振動信號和壓力信號,通過小波消噪處理有效提取故障特征,利用PCA分析很大程度上減少了信息融合特征向量的維數(shù),通過可診斷性檢驗證明PCA重新組合的特征向量可以實現(xiàn)多故障診斷。在BP算法中引人附加動量項,獲得*學習率,通過改進BP算法實現(xiàn)不同間隙大小球頭松動故障的有效診斷。


      來源:三一液壓元件網(wǎng)

      全年征稿/資訊合作 聯(lián)系郵箱:1271141964@qq.com

      免責聲明

      • 凡本網(wǎng)注明"來源:智能制造網(wǎng)"的所有作品,版權(quán)均屬于智能制造網(wǎng),轉(zhuǎn)載請必須注明智能制造網(wǎng),http://www.towegas.com。違反者本網(wǎng)將追究相關(guān)法律責任。
      • 企業(yè)發(fā)布的公司新聞、技術(shù)文章、資料下載等內(nèi)容,如涉及侵權(quán)、違規(guī)遭投訴的,一律由發(fā)布企業(yè)自行承擔責任,本網(wǎng)有權(quán)刪除內(nèi)容并追溯責任。
      • 本網(wǎng)轉(zhuǎn)載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點或證實其內(nèi)容的真實性,不承擔此類作品侵權(quán)行為的直接責任及連帶責任。其他媒體、網(wǎng)站或個人從本網(wǎng)轉(zhuǎn)載時,必須保留本網(wǎng)注明的作品來源,并自負版權(quán)等法律責任。
      • 如涉及作品內(nèi)容、版權(quán)等問題,請在作品發(fā)表之日起一周內(nèi)與本網(wǎng)聯(lián)系,否則視為放棄相關(guān)權(quán)利。

      <
      更多 >

      工控網(wǎng)機器人儀器儀表物聯(lián)網(wǎng)3D打印工業(yè)軟件金屬加工機械包裝機械印刷機械農(nóng)業(yè)機械食品加工設(shè)備制藥設(shè)備倉儲物流環(huán)保設(shè)備造紙機械工程機械紡織機械化工設(shè)備電子加工設(shè)備水泥設(shè)備海洋水利裝備礦冶設(shè)備新能源設(shè)備服裝機械印染機械制鞋機械玻璃機械陶瓷設(shè)備橡塑設(shè)備船舶設(shè)備電子元器件電氣設(shè)備


      我要投稿
      • 投稿請發(fā)送郵件至:(郵件標題請備注“投稿”)1271141964.qq.com
      • 聯(lián)系電話0571-89719789
      工業(yè)4.0時代智能制造領(lǐng)域“互聯(lián)網(wǎng)+”服務(wù)平臺
      智能制造網(wǎng)APP

      功能豐富 實時交流

      智能制造網(wǎng)小程序

      訂閱獲取更多服務(wù)

      微信公眾號

      關(guān)注我們

      抖音

      智能制造網(wǎng)

      抖音號:gkzhan

      打開抖音 搜索頁掃一掃

      視頻號

      智能制造網(wǎng)

      公眾號:智能制造網(wǎng)

      打開微信掃碼關(guān)注視頻號

      快手

      智能制造網(wǎng)

      快手ID:gkzhan2006

      打開快手 掃一掃關(guān)注
      意見反饋
      關(guān)閉
      企業(yè)未開通此功能
      詳詢客服 : 0571-87858618