據(jù)外媒報道,天王星和海王星的內(nèi)部所含水量大約是地球海洋的5萬倍,一種被稱為“超離子水”的水被認為穩(wěn)定存在于超過天王星和海王星半徑約三分之一處的深度中。超離子水是水的一個階段,其中氫原子變成液態(tài),而氧原子在晶格上保持固態(tài)。盡管超離子(superionic)態(tài)在30多年前就被提出來了,但它的光學特性和氧晶格只是在最近由勞倫斯利弗莫爾國家實驗室(LLNL)的Marius Millot和Federica Coppari在實驗中精確測量的,這種熱“黑冰”的許多特性仍然是未知的。
LLNL的科學家們開發(fā)了一種新的方法,使用機器學習以從沒有過的分辨率研究“超離子水”的相行為。科學家稱,埋藏在行星核心深處的,宇宙中的大部分水可能是“超離子水”。了解它的熱力學和傳輸特性對行星科學至關重要,但卻很難通過實驗或理論來探測。
在冰巨星行星中發(fā)現(xiàn)的壓力和溫度下,第一原理分子動力學(FPMD)模擬預測這種水的大部分處于超離子態(tài)。然而,這種量子力學模擬傳統(tǒng)上僅限于較短的模擬時間(10幾皮秒)和較小的系統(tǒng)規(guī)模(100多個原子),導致相界位置的重大不確定性,如熔化線。
在超離子水的實驗中,樣品的準備是非常具有挑戰(zhàn)性的:氫的位置無法確定,動態(tài)壓縮實驗中的溫度測量也不直接。通常情況下,實驗在設計階段和解釋結果時都會受益于量子分子動力學模擬提供的指導。
在最近的研究中,該團隊通過利用機器學習技術從量子力學計算中學習原子相互作用,在處理大系統(tǒng)規(guī)模和長時間尺度的能力上取得了飛躍。然后,他們使用該機器學習的潛力來驅(qū)動分子動力學,并使前沿的自由能采樣方法得以使用,以準確確定相界。
LLNL物理學家Sebastien Hamel說:“我們使用機器學習和自由能方法來克服量子力學模擬的局限性,并描述極端條件下水的氫擴散、超離子過渡和水在極端條件下的相行為,”他是發(fā)表在《自然-物理學》上的論文的共同作者。
研究小組發(fā)現(xiàn),與現(xiàn)有實驗觀測結果一致的相界有助于解決冰巨星內(nèi)部的絕緣冰、不同的超離子相和液態(tài)水的比例。
構建有效的相互作用勢,保持量子力學計算的準確性是一項艱巨的任務。這里開發(fā)的框架是通用的,可以用來發(fā)現(xiàn)或描述其他復雜的材料,如電池電解質(zhì)、塑料、慣性約束聚變(ICF)膠囊中使用的納米晶金剛石,以及與行星科學有關的氨、鹽、碳氫化合物、硅酸鹽和相關混合物的新相。
Hamel說:“我們對超離子水的定量理解為天王星和海王星等行星的內(nèi)部結構、演變和磁場以及越來越多的冰冷系外行星提供了啟示。”
(原標題:LLNL科學家使用機器學習研究冰巨星中“超離子水”的行為)
版權與免責聲明:
凡本站注明“來源:智能制造網(wǎng)”的所有作品,均為浙江興旺寶明通網(wǎng)絡有限公司-智能制造網(wǎng)合法擁有版權或有權使用的作品,未經(jīng)本站授權不得轉(zhuǎn)載、摘編或利用其它方式使用上述作品。已經(jīng)本網(wǎng)授權使用作品的,應在授權范圍內(nèi)使用,并注明“來源:智能制造網(wǎng)”。違反上述聲明者,本站將追究其相關法律責任。
本站轉(zhuǎn)載并注明自其它來源(非智能制造網(wǎng))的作品,目的在于傳遞更多信息,并不代表本站贊同其觀點或和對其真實性負責,不承擔此類作品侵權行為的直接責任及連帶責任。如其他媒體、平臺或個人從本站轉(zhuǎn)載時,必須保留本站注明的作品第一來源,并自負版權等法律責任。如擅自篡改為“稿件來源:智能制造網(wǎng)”,本站將依法追究責任。
鑒于本站稿件來源廣泛、數(shù)量較多,如涉及作品內(nèi)容、版權等問題,請與本站聯(lián)系并提供相關證明材料:聯(lián)系電話:0571-89719789;郵箱:1271141964@qq.com。